SWOT INSTITUTE STRAIGHT LINE

 XI-TEST

 XI-TEST}

Time : 1 hr .

1. Find the value of x for which the points $(x,-1),(2,1)$ and $(4,5)$ are collinear.
2. If three points $(h, 0),(a, b)$ and $(0, k)$ lie on a line, show that $\frac{a}{h}+\frac{b}{k}=1$.
3. Find equation of the line through the point $(0,2)$ making an angle $\frac{2 \pi}{3}$ with the positive x-axis. Also, find the equation of linen parallel to it and crossing the y-axis at a distance of 2 units below the origin.
4. Find equation of the line passing through the point $(2,2)$ and cutting off intercepts on the axes whose sum is 9 .
5. Find the equation of the line that cuts off equal intercepts on the coordinate axes and passes through the point $(2,3)$.
6. $\quad P(a, b)$ is the mid-point of a line segment between axes. Show that equation of the line is $\frac{x}{a}+\frac{y}{b}=2$.
7. Find the angle between the lines $y=\sqrt{3} x-5=0$ and $\sqrt{3} y-x+6=0$.
8. Reduce the equation $\sqrt{3} x+y-8=0$ into normal form. Find the values of p and ω.
9. Find the distance of the point $(3,-5)$ from the line $3 x-4 y-26=0$.
10. Prove that the line through the point $\left(x_{1}, y_{1}\right)$ and parallel to the line $A x+B y+C=0$ is

$$
A\left(x-x_{1}\right)+B\left(y-y_{1}\right)=0 .
$$

11. The perpendicular from the origin to the line $y=m x+c$ meets it at the point $(-1,2)$. Find the values of m and c.
12. If p and q are the lengths of perpendicular from the origin to the lines $x \cos \theta-y \sin \theta=k \cos 2 \theta$ and $x \sec \theta+y \operatorname{cosec} \theta=k$, respectively, prove that $p^{2}+4 q^{2}=k^{2}$.
13. If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$.
14. The line through the points $(h, 3)$ and $(4,1)$ intersects the line $7 x-9 y-19=0$ at right angle. Find the value of h.
